

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Zulassungs- und Genehmigungsstelle für Bauprodukte und Bauarten

Datum: Geschäftszeichen:

19.10.2021 II 23-1.65.40-28/21

Allgemeine bauaufsichtliche Zulassung/Allgemeine Bauartgenehmigung

Nummer:

Z-65.40-153

Antragsteller:

E.L.B. Füllstandsgeräte Bundschuh GmbH & Co. KG An der Hartbrücke 6 64625 Bensheim

Geltungsdauer

vom: **3. November 2021** bis: **3. November 2026**

Gegenstand dieses Bescheides:

Leckagesonde (Schwimmer) Typ "T200L" und Messumformer als Bauteile von Leckageerkennungssystemen

Der oben genannte Regelungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen/genehmigt.

Dieser Bescheid umfasst sieben Seiten und eine Anlage.

Der Gegenstand ist erstmals am 11. März 1998 allgemein bauaufsichtlich zugelassen worden.

Allgemeine bauaufsichtliche Zulassung/ Allgemeine Bauartgenehmigung Nr. Z-65.40-153

Seite 2 von 7 | 19. Oktober 2021

I ALLGEMEINE BESTIMMUNGEN

- Mit diesem Bescheid ist die Verwendbarkeit bzw. Anwendbarkeit des Regelungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Dem Verwender bzw. Anwender des Regelungsgegenstandes sind, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", Kopien dieses Bescheides zur Verfügung zu stellen. Zudem ist der Verwender bzw. Anwender des Regelungsgegenstandes darauf hinzuweisen, dass dieser Bescheid an der Verwendungs- bzw. Anwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien zur Verfügung zu stellen.
- Dieser Bescheid darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen diesem Bescheid nicht widersprechen, Übersetzungen müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- 7 Dieser Bescheid bezieht sich auf die von dem Antragsteller gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Grundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.

Seite 3 von 7 | 19. Oktober 2021

II BESONDERE BESTIMMUNGEN

1 Regelungsgegenstand und Verwendungs- bzw. Anwendungsbereich

- (1) Gegenstand dieses Bescheides ist eine nach dem Schwimmerprinzip arbeitende Leckagesonde mit der Bezeichnung "T200L..." mit eingebautem bzw. nachgeschaltetem Messumformer, die als Bauteil eines Leckageerkennungssystems (siehe Anlage 1) zur Überwachung von Auffangräumen, Auffangwannen, Pumpensümpfen, Kontroll- und Füllschächten von Anlagen zum Lagern, Abfüllen und Umschlagen wassergefährdender Flüssigkeiten dient und ausgelaufene wassergefährdende Flüssigkeiten meldet. Der Schwimmer der Leckagesonde ruht auf einem Anschlagring und betätigt die im Führungsrohr angebrachten Reedkontakte mittels im Schwimmer eingebautem Permanentmagneten. Der Schwimmer wird im Leckagefall von der auslaufenden Flüssigkeit angehoben, wobei die Reedkontakte öffnen und über den Messumformer ein binäres elektrisches Signal geliefert wird. Mit diesem Signal wird akustisch und optisch Alarm ausgelöst. Die für die Melde- oder Steuerungseinrichtung erforderlichen Teile und der Signalverstärker ((4) und (5.) nach Anlage 1) sind nicht Gegenstand dieses Bescheides.
- (2) Die Leckagesonde wird aus Polyvinylchlorid (PVC), Polypropylen (PP) oder Polyethylen (PE-HD) gefertigt.
- (3) Die Leckagesonde darf nur bei der Lagerung wassergefährdender dünnflüssiger und feststoffarmer Flüssigkeiten mit Dichten über 0,80 kg/dm³ verwendet werden. Diese Flüssigkeiten dürfen nicht zum Verkleben, Verharzen oder Auskristallisieren neigen. Eventuelle Feststoffanteile dürfen nicht magnetisierbar sein und dürfen einen Partikeldurchmesser von 200 µm nicht überschreiten.
- (4) Mit diesem Bescheid wird der Nachweis der Funktionssicherheit des Regelungsgegenstandes im Sinne von Absatz (1) erbracht.
- (5) Der Bescheid wird unbeschadet der Bestimmungen und der Prüf- oder Genehmigungsvorbehalte anderer Rechtsbereiche erteilt.
- (6) Dieser Bescheid berücksichtigt die wasserrechtlichen Anforderungen an den Regelungsgegenstand. Gemäß § 63 Abs. 4 Nr. 2 und 3 WHG¹ gilt der Regelungsgegenstand damit wasserrechtlich als geeignet.
- (7) Die Geltungsdauer dieses Bescheides (siehe Seite 1) bezieht sich auf die Verwendung im Sinne von Einbau des Regelungsgegenstandes und nicht auf die Verwendung im Sinne der späteren Nutzung.

2 Bestimmungen für das Bauprodukt

2.1 Allgemeines

Die Leckagesonde mit Messumformer und ihre Teile müssen den Besonderen Bestimmungen und der Anlage dieses Bescheides sowie den beim Deutschen Institut für Bautechnik hinterlegten Angaben entsprechen.

Wasserhaushaltsgesetz vom 31. Juli 2009 (BGBI. I S. 2585), das zuletzt durch Artikel 2 des Gesetzes vom 18. August 2021 (BGBI. I S. 3901) geändert worden ist

Seite 4 von 7 | 19. Oktober 2021

2.2 Eigenschaften und Zusammensetzung

- (1) Der Regelungsgegenstand setzt sich aus folgenden Einzelteilen zusammen (Nummerierung siehe Anlage 1) Der Typenschlüssel der vollständigen Typenbezeichnungen ist in der Technischen Beschreibung² enthalten:
 - (1) Leckagesonde (Magnettauchsonde):

Typ T200L . . .

(2a) in der Leckagesonde eingebauter Messumformer:

Typ ET-52.

Typ ET-580

Typ ET-R (für Leckagesonde Typ T-200LR...)

(2b) separater Messumformer bzw. Schaltverstärker:

Typ KR-163 . . .

Typ KR-163 A Ex . . .

Typ KR-168 . . .

Typ KR-268 . . .

Typ XR-...

Typ OAA-100-A1 . . .

Typ OAA-100-A3 . . . Typ OAA-200- . . .

(mit integrierter Meldeeinrichtung)

Typ OAA-300- . . . (mit integrierter Meldeeinrichtung)

Typ OAA-500- . . . (mit integrierter Meldeeinrichtung)

- (2) Die Leckagesonde benötigt bis zur Erkennung und Anzeige einer Leckage einen Flüssigkeitsstand von 30 mm bis 50 mm (Ansprechhöhe in Abhängigkeit von der Dichte der Flüssigkeit und dem verwendeten Schwimmer).
- (3) Die Teile des Leckageerkennungssystems, die nicht Gegenstand der von dem Bescheid erfassten allgemeinen bauaufsichtlichen Zulassung sind, dürfen nur verwendet werden, wenn sie den Anforderungen des Abschnitts 3 "Allgemeine Baugrundsätze" und des Abschnitts 4 "Besondere Baugrundsätze" der ZG-ÜS³ entsprechen. Sie brauchen jedoch keine Zulassungsnummer zu haben.

2.3 Herstellung und Kennzeichnung

2.3.1 Herstellung

Die Leckagesonde mit Messumformer darf nur im Werk des Antragstellers, E.L.B.-Füllstandsgeräte Bundschuh GmbH & Co. KG in 64625 Bensheim, hergestellt werden. Sie muss hinsichtlich Bauart, Abmessungen und Werkstoffen den in der im DIBt hinterlegten Liste aufgeführten Unterlagen entsprechen.

2.3.2 Kennzeichnung

Die Leckagesonde mit Messumformer, deren Verpackung oder deren Lieferschein muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.4 erfüllt sind.

Technische Beschreibung des Antragstellers vom 08.10.2021 auf Grundlage der von der TÜV NORD CERT GmbH geprüften Technischen Beschreibung vom 19.06.2018 für die Leckagesonde Typ T-200L...

³ ZG-ÜS:2012-07 Zulassungsgrundsätze für Überfüllsicherungen des Deutschen Instituts für Bautechnik

Allgemeine bauaufsichtliche Zulassung/ Allgemeine Bauartgenehmigung Nr. Z-65.40-153

Seite 5 von 7 | 19. Oktober 2021

Zusätzlich sind die vorgenannten Teile selbst mit folgenden Angaben zu kennzeichnen:

- Hersteller oder Herstellerzeichen*),
- Typenbezeichnung,
- Serien- oder Chargennummer bzw. Identnummer bzw. Herstelldatum,
- Zulassungsnummer*).
- *) Bestandteil des Ü-Zeichens, das Teil ist nur wiederholt mit diesen Angaben zu kennzeichnen, wenn das Ü-Zeichen nicht direkt auf dem Teil aufgebracht wird.

2.4 Übereinstimmungsbestätigung

2.4.1 Allgemeines

Die Bestätigung der Übereinstimmung der Leckagesonde mit Messumformer mit den Bestimmungen der von dem Bescheid erfassten allgemeinen bauaufsichtlichen Zulassung muss für das Herstellwerk mit einer Übereinstimmungserklärung des Herstellers auf der Grundlage einer werkseigenen Produktionskontrolle und einer Erstprüfung des Regelungsgegenstandes durch eine hierfür anerkannte Prüfstelle erfolgen. Die Übereinstimmungserklärung hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

2.4.2 Werkseigene Produktionskontrolle

- (1) Im Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen der von dem Bescheid erfassten allgemeinen bauaufsichtlichen Zulassung entsprechen. Im Rahmen der werkseigenen Produktionskontrolle ist eine Stückprüfung jeder Leckagesonde und jedes Messumformers oder deren Einzelteile durchzuführen. Durch diese Stückprüfung hat der Hersteller zu gewährleisten, dass die Werkstoffe, Maße und Passungen sowie das fertiggestellte Bauprodukt dem geprüften Baumuster entsprechen und das Leckageerkennungssystem funktionssicher ist.
- (2) Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:
- Bezeichnung des Regelungsgegenstandes,
- Art der Kontrolle oder Prüfung.
- Datum der Herstellung und der Prüfung,
- Ergebnisse der Kontrollen oder Prüfungen,
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.
- (3) Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.
- (4) Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Wenn ein Einzelteil den Anforderungen nicht entspricht, ist es so zu handhaben, dass eine Verwechslung mit übereinstimmenden Teilen ausgeschlossen ist. Nach Abstellung des Mangels ist soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich die betreffende Prüfung unverzüglich zu wiederholen.

2.4.3 Erstprüfung durch eine anerkannte Prüfstelle

Im Rahmen der Erstprüfung sind die in Anlehnung an die ZG-ÜS aufgeführten Funktionsprüfungen durchzuführen. Wenn die diesem Bescheid zugrunde liegenden Nachweise an Proben aus der laufenden Produktion erbracht wurden, ersetzen diese Prüfungen die Erstprüfung.

Seite 6 von 7 | 19. Oktober 2021

3 Bestimmungen für Planung und Ausführung

3.1 Planung

(1) Vom Hersteller oder vom Betreiber der Leckagesonde ist der Nachweis der hinreichenden chemischen Beständigkeit der unter Abschnitt 1 (2) genannten Werkstoffe gegenüber den wassergefährdenden Flüssigkeiten und deren Dämpfen oder Kondensat zu führen. Zur Nachweisführung können Angaben der Werkstoffhersteller, Veröffentlichungen in der Fachliteratur, eigene Erfahrungswerte oder entsprechende Prüfergebnisse herangezogen werden.

(2) Die Leckagesonde erfordert eine ebene Aufstandsfläche für den Sondenfuß.

3,2 Ausführung

- (1) Das Leckageerkennungssystem mit Leckagesonde und Messumformer nach diesem Bescheid muss entsprechend Abschnitt 1.1 der Technischen Beschreibung angeordnet bzw. entsprechend deren Abschnitten 5 und 6 eingebaut und eingestellt werden. Mit dem Einbauen, Instandhalten, Instandsetzen und Reinigen des Regelungsgegenstandes dürfen nur solche Betriebe beauftragt werden, die über Kenntnisse des Brand- und Explosionsschutzes verfügen, wenn diese Tätigkeiten an Anlagen für Flüssigkeiten mit Flammpunkt $\leq 55\,^{\circ}\mathrm{C}$ durchgeführt werden. Nach Abschluss der Montage des Leckageerkennungssystems muss durch einen Sachkundigen des einbauenden Betriebes eine Prüfung auf ordnungsgemäßen Einbau und einwandfreie Funktion durchgeführt werden. Über die Einstellung der Leckagesonde und die ordnungsgemäße Funktion ist eine Bescheinigung auszustellen und dem Betreiber zu übergeben.
- (2) Die Leckagesonde ist so zu montieren, dass sie von eventueller Leckageflüssigkeit sicher erreicht wird.
- (3) Beim Einbau der Leckagesonde ist darauf zu achten, dass Dichtflächen durchdringende Schraubverbindungen unterhalb des maximal möglichen Flüssigkeitsspiegels unzulässig sind.
- (4) Werden die Messumformer bzw. Schaltverstärker (2b) nach Abschnitt 2.2 (1) nicht in einem trockenen Raum betrieben, müssen sie in einem Schutzgehäuse angeordnet werden, das mindestens der Schutzart IP54 nach DIN EN 60529⁴ entspricht.
- (5) Die Fehlerüberwachung dieses Leckageerkennungssystems ist so zu wählen, dass das Ausgangssignal sowohl bei Hilfsenergieausfall als auch bei Leitungsbruch im Steuerstromkreis denselben Zustand annimmt wie bei Leckageerkennung.

4 Bestimmungen für Nutzung, Unterhalt, Wartung und wiederkehrende Prüfungen

- (1) Das Leckageerkennungssystem mit Leckagesonde und Messumformer nach diesem Bescheid muss in Anlehnung an die ZG-ÜS Anhang 2, "Einbau- und Betriebsrichtlinie für Überfüllsicherungen" betrieben werden. Der Anhang und die Technische Beschreibung sind vom Antragsteller mitzuliefern. Der Anhang 2 der ZG-ÜS darf zu diesem Zweck kopiert werden.
- (2) Die Betriebsbereitschaft des Leckageerkennungssystems ist in zeitlichen Abständen entsprechend den betrieblichen Bedingungen in geeigneter Weise zu überprüfen.
- (3) Die Funktionsfähigkeit des Leckageerkennungssystems ist nach Abschnitt 8 der Technischen Beschreibung und in Anlehnung an die Anforderungen des Abschnitts 5.2 von Anhang 2 der ZG-ÜS in angemessenen Zeitabständen, mindestens aber einmal im Jahr, zu prüfen. Es liegt in der Verantwortung des Betreibers, die Art der Überprüfung und die Zeitabstände im genannten Zeitrahmen zu wählen.
- (4) Stör- und Fehlermeldungen sind in Abschnitt 4 der Technischen Beschreibung beschrieben.

DIN EN 60529:2014-09 Schutzarten durch Gehäuse (IP-Code)

Allgemeine bauaufsichtliche Zulassung/ Allgemeine Bauartgenehmigung Nr. Z-65.40-153

Seite 7 von 7 | 19. Oktober 2021

(5) Bei Wiederinbetriebnahme der Lageranlage nach Stilllegung oder bei Wechsel der wassergefährdenden Flüssigkeit, bei dem mit einer Änderung der Einstellungen oder der Funktion der Leckagesonde zu rechnen ist, ist eine erneute Funktionsprüfung, siehe Abschnitt 3.2 (1), durchzuführen.

Holger Eggert Referatsleiter Beglaubigt Schönemann

Leckagesonde (1) Schwimmer Typ PE-52, Dichte ≥ 1.05 g/cm³ Ansprechhöhe A ≤ 50 mm Eintauchtiefe u. Ansprechhöhe / mm mit PE 52 für Dichte ≥ 1,05 g/cm3 " PE 52L " " ≥ 0,8 50 Sondeneinführung 40 (Zubehör/geg. 63 30 bauseitige Kabelbefestigung) 20 10 Kabel 0 Ø52 0,5 1,0 2,0 Tank Dichte / g/cm³ Auffangwanne Kabellänge Schwimmer Typ PE-52 L, Dichte ≥ 0.8 g/cm³ Kabelabdichtung Eintauchtiefe u. Ansprechhöhe / mm Schwimmer 40 Sondenendstück 30 ~ 130 (Fuß) 45 20 10 Leckagesonde mit standsicherem Fuß, auf dem Ø52 Ø52 Boden aufstehend Dichte / g/cm³ Bsp. für Anschlussgehäuse Schematischer Aufbau der Leckagesicherung 屲 \otimes (5a) (5b) (2a) (1) (2b)(1) Standaufnehmer (2a) Messumformer (2b) Messumformer Signalverstärker (4)(5a) Meldeeinrichtung (5c)(5b) Steuerungseinrichtung (5c) Stellglied (4) bis (5c) nicht Gegenstand dieses Bescheides Leckagesonde (Schwimmer) Typ "T200L" und Messumformer als Bauteile von Leckageerkennungssystemen Anlage 1 Übersicht

Z53869.18_1 1.65.40-28/21

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

TB Z-65.40-153 Okt2021.doc Stand: 08.10.2021 Seite: 1/24

Technische Beschreibung

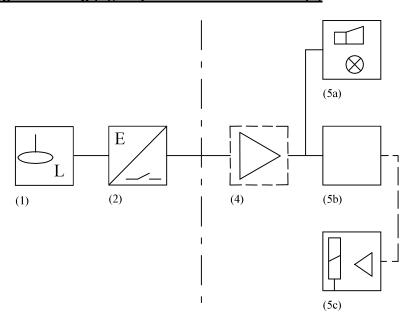
Leckagesonde Typ T-20_.L.__.

Messumformer

Typ KR-163...; KR-168...; KR-268...; KR-163/A/Ex...; XR-...; ET-52.; ET-580; ET-R...; OAA-100...; OAA-200...; OAA-300...; OAA-500...

1. Aufbau der Leckagesicherung

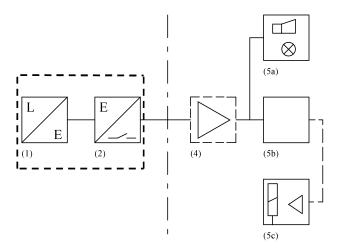
Die Leckagesicherung besteht aus dem, nach dem Schwimmerprinzip arbeitenden Standaufnehmer (1) und separatem Messumformer (2) (KR-163..., KR-163/A/Ex..., KR-268..., XR- ...; OAA-100..) oder einem Standaufnehmer (1) mit integriertem Messumformer (2) (ET-520..; ET-521; ET-522; ET-580)) oder einem Standaufnehmer LR (1,2) (Schwimmer – Magnetschalter) die am Ausgang ein binäres Schaltsignal liefern.


Dieses binäre Signal kann direkt oder über einen Signalverstärker (4), der Meldeeinrichtung (5a) oder der Steuerungseinrichtung (5b) mit ihrem Stellglied (5c) zugeführt werden.

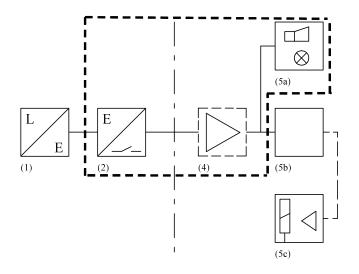
Bei Leckagesicherungen bestehend aus dem Standaufnehmer (1) mit nachgeschaltetem Alarmmelder (OAA-200...; OAA-300...bzw. OAA-500...) ist neben dem Messumformer (2) auch die Meldeeinrichtung (5a) integriert.

Die nichtgeprüften Anlageteile der Leckagesicherung, wie Signalverstärker (4), die Meldeeinrichtung (5a) oder die Steuerungseinrichtung (5b) mit dem Stellglied (5c) müssen den Anforderungen der Abschnitte 3 und 4 der Zulassungsgrundsätze (ZG-ÜS) für Überfüllsicherungen entsprechen.

1.1 Schematischer Aufbau der Leckagesicherung


1.1.1 Leckagesicherung (1), separater Messumformer (2)

- (1) Leckagesicherung
- (2) Messumformer
- (4) Signalverstärker
- (5a) Meldeeinrichtung
- (5b) Steuerungseinrichtung
- (5c) Stellglied

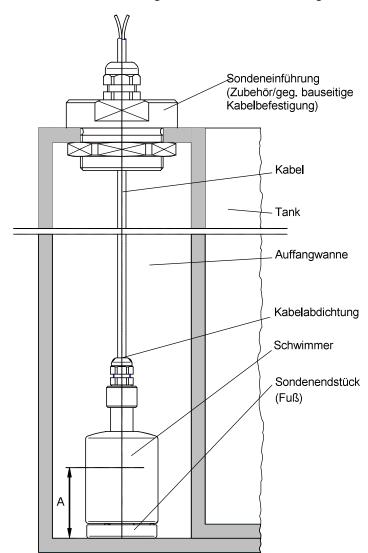

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

1.1.2 Leckagesicherung (1) mit integriertem Messumformer (2)

- (1) Leckagesicherung
- (2) Messumformer integriert
- (4) Signalverstärker
- (5a) Meldeeinrichtung
- (5b) Steuerungseinrichtung
- (5c) Stellglied

1.1.3 Leckagesicherung (1) mit sep. Messumformer (2) und integr. Meldeeinrichtung (5a)

- (1) Leckagesicherung
- (2) Messumformer integriert
- (4) Signalverstärker integriert
- (5a) Meldeeinrichtung integriert
- (5b) Steuerungseinrichtung
- (5c) Stellglied


Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

TB Z-65.40-153 Okt2021.doc Stand: **08.10.2021** Seite: 3/24

1.2 Funktionsbeschreibung

Der Schwimmer der Leckagesonde ruht unterhalb des eingestellten Schaltpunktes auf einem Anschlagring und betätigt den (die) im Führungsrohr angebrachten Reedkontakt(e) mit dem im Schwimmer eingebauten Magneten. Wird der Schwimmer vom steigenden Flüssigkeitspegel angehoben, öffne(t)n der (die) Reedkontakt(e) und löst so die Alarmmeldung aus.

Bei Elektrischen-Messumformern wird mit zwei Signalleuchten angezeigt, ob der Alarm durch einen Leitungsfehler oder eine Leckagemeldung ausgelöst wurde.

Die Messumformer arbeiten nach dem Ruhestromprinzip, d.h. bei nicht vorhandener Alarmmeldung ist das Ausgangsrelais angezogen. Es fällt ab, wenn ein Leckagealarm, ein Leitungsfehler vorliegt oder die Versorgungsspannung ausgefallen ist.

Der Messumformer ermöglicht den Anschluss von nachgeschalteten Melde- und Steuerungseinrichtungen. Der **L-Kontakt** besteht aus zwei parallel angeordneten Reedkontakten, die elektrisch in Reihe geschaltet sind.

Die Leitungsüberwachung zwischen dem **L-Kontakt** und dem Messumformer erfolgt durch die Auswertung des Stromkreis-Widerstandes.

Der **LR-Kontakt** besteht aus einem Reedkontakt und einem in Reihe geschaltetem Kontaktschutzwiderstand.

Im betriebsbereiten Zustand der Leckagesonde ist der Stromkreis-Widerstand ca. 1kOhm, bei Leckagealarm ca. 12kOhm. Stromkreis-Widerstände

<< 1kOhm oder >> 12kOhm werden als Leitungsfehler gewertet.

	Sig	nalisier	ungs T	abelle			
	KR-163	/ ET-580	KR-168	/ -268 /	/ XR	ET- 520	/-521
LED	grün	rot	grün	gelb	rot	grün	rot
Netz AUS	•	•	•	•	•	•	•
Betrieb	\	•	\	•	•	\(\psi\	•
Leitungsfehler	•	\(\Delta\)	₩	₩	\	•	☼
Füllalarm	#	\(\Delta\)	₩	₩	•	\(\Delta\)	☆

LED aus: ●, LED ein: ❖

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

Signa	lisierungs T	abelle	OAA-1	00		
		0/	AA 100-A1		OAA 10	00-A3
LED		grün	rot I	rot II	grün	rot
Netz AUS		•	•	•	•	•
Betrieb		≎	•	•	₩	•
Leitungsfehler	Kanal 1	☼●	☼	•	☆ ●	\(\phi\)
Leitungsfehler quittiert	Hupe Aus	☼●		•	☆ ●	₩ •
Füllalarm	Kanal 1	☆	☼	•	₩	\
Füllalarm quittiert	Hupe Aus	☆		•	☼	☆ •
Leitungsfehler	Kanal 2	☆ •	•	\(\Delta\)		
Leitungsfehler quittiert	Hupe Aus	☆ •	•	₩ •		
Füllalarm	Kanal 2	☆	•	\(\phi\)		
Füllalarm quittiert	Hupe Aus	✡	•	☆ •		

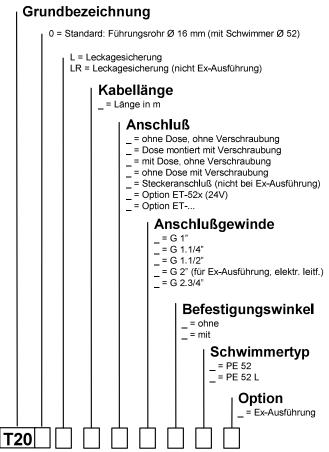
LED aus: ●, LED ein: ☼, LED blinkt: ☼ ●.

Signalisierungs Tabelle OAA-200							
LED	_	I LEC arbig	<u>), 3</u>	Samn Alar		<u>Hupe</u>	
Netz AUS, bzw. kein Sensor angeschlossen			•		•	Aus	
Betrieb, Sensor angeschlossen	grün	₩			•	Aus	
Leitungsfehler Leitungsfehler quittiert	rot rot	‡	•	ф ф	•	Ein Aus	
Füllalarm, Leckagealarm Füllalarm, Leckagealarm quittiert	gelb gelb	‡	•	ф ф	•	Ein Aus	
Fehler behoben Behobenen Fehler quittiert	grün grün	ф ф	•	☼	•	Aus Aus	

LED aus: ●, LED ein: ☼, LED blinkt: ☼ ●.

Signalisierungs Tabelle OAA-300							
LED	Kanal LEI		Sammel-	<u>Hupe</u>			
Netz AUS, bzw. kein Sensor angeschlossen	farbig	•	Alarm •	Aus			
Betrieb, Sensor angeschlossen	grün 🌣		•	Aus			
Leitungsfehler Leitungsfehler quittiert Fehler behoben Behobenen Fehler quittiert	rot prot prot prot prot prot prot prot p	•		Ein Aus Aus Aus			
Füllalarm, Leckagealarm Füllalarm, Leckagealarm quittiert Fehler behoben Behobenen Fehler quittiert	gelb ⇔ gelb ⇔ grün ⇔ grün ⇔	•		Ein Aus Aus Aus			

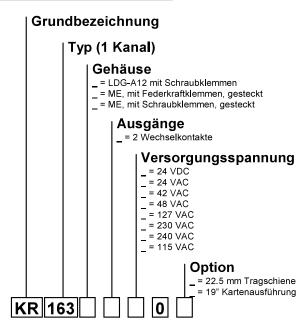
LED aus: ●, LED ein: ☼, LED blinkt: ☼ ●.


Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

Signalisierungs Tabelle OAA-500							
LED		al LE	<u>), 3</u>	Samn		<u>Hupe</u>	
	<u></u>	<u>arbig</u>		Alar	m		
Netz AUS, bzw. kein Sensor angeschlossen			•		•	Aus	
Betrieb, Sensor angeschlossen	grün	\(\frac{1}{2}\)			•	Aus	
Leitungsfehler	rot	₩		☼	•	Ein	
Leitungsfehler quittiert	rot	\(\frac{1}{2}\)	•	*	•	Aus	
Füllalarm, Leckagealarm	gelb	☆		₩	•	Ein	
Füllalarm, Leckagealarm quittiert	gelb	ф ф	•	\$	•	Aus	
Fehler behoben	grün	\(\frac{1}{2}\)	•	☼	•	Aus	
Behobenen Fehler quittiert	grün	\(\Delta\)			•	Aus	

LED aus: ●, LED ein: ☼, LED blinkt: ☼ ●.

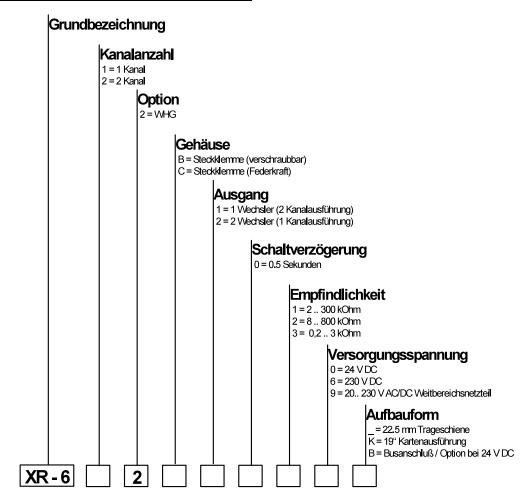
1.3 Typenschlüssel


1.3.1 Leckagesonde (1)

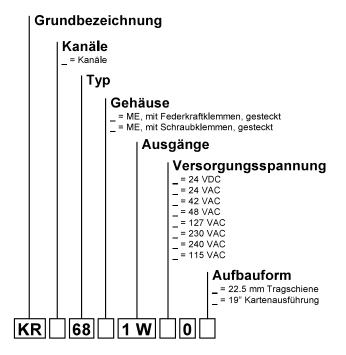

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

1.3.2 Messumformer (2)

1.3.2.1 Messumformer KR-163...

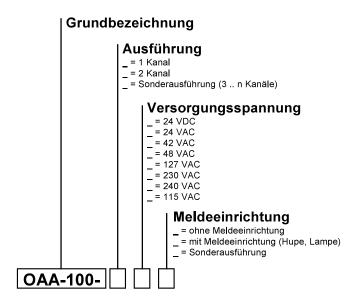


1.3.2.2 Messumformer KR-163/A/Ex...

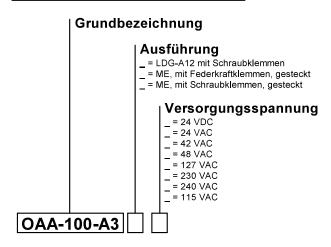


Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

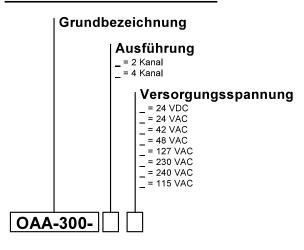
1.3.2.3 Messumformerbaureihe XR-_



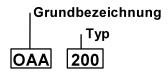
1.3.2.4 Messumformer KR-x68...



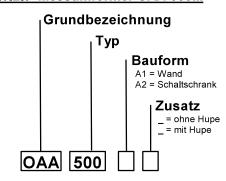
Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten


1.3.2.5 Messumformer OAA-100-A1...

1.3.2.6 Messumformer OAA-100-A3...

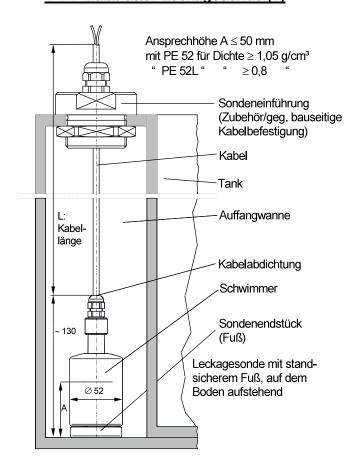


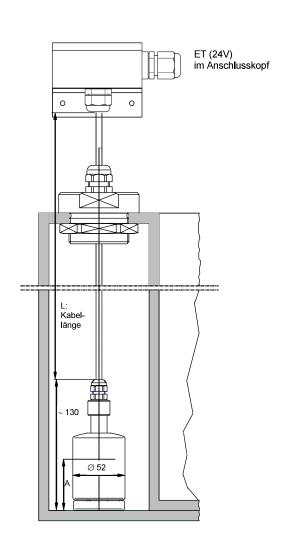
1.3.2.7 Messumformer OAA-300...



Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

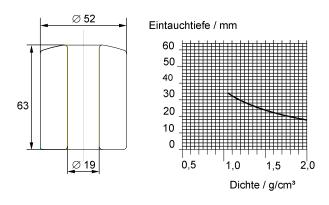
1.3.2.8 Messumformer OAA-200...

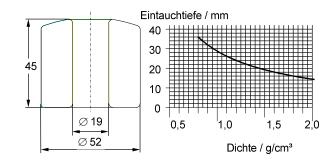



1.3.2.9 Messumformer OAA-500...

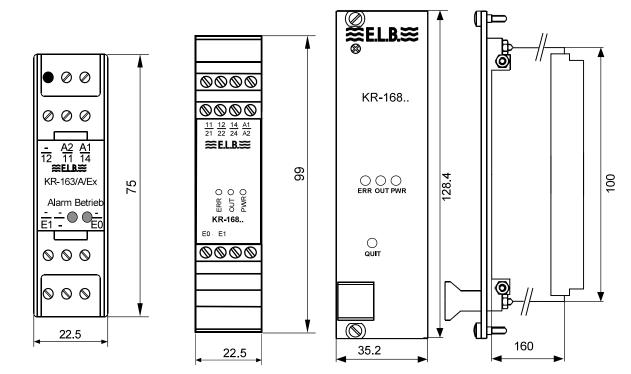
1.4 Maßblätter, Technische Daten

1.4.1 Maßblätter Leckagesonde (1)



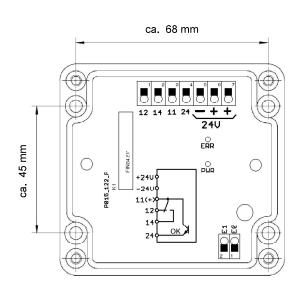

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

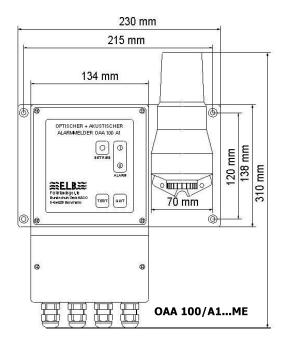
1.4.2 Maßblätter der Schwimmer


Schwimmer - Typ: PE 52, für Dichte ≥ 1,05 g/cm³

Schwimmer - Typ: PE 52 L, für Dichte \geq 0,8 g/cm³

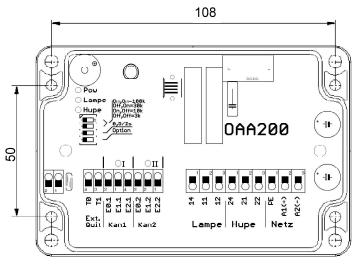
1.4.3 Maßblätter des Messumformers (2)

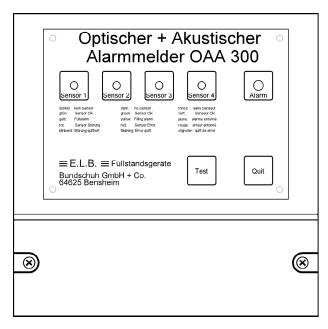

Gehäuse für Typen: KR-163/A/Ex.. KR-163/A/...


OAA-100-A3-A... XR- Gehäuse für Typen:

KR-168/B/... KR-268/B/... KR-163/B/... OAA-100-A3-B... Gehäuse für Typen: KR-168/B/.../K

KR-168/B/.../K KR-268/B/.../K OAA-100-K-...


Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten


Gehäuseabmessung ET-520a:

75 mm x 80 mm

Gehäuseabmessung:

120 mm x 80 mm x 57 mm

Gehäuseabmessung: 170 x 165 x 85 mm

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

TB Z-65.40-153 Okt2021.doc Stand: 08.10.2021 Seite: 12/24

Gehäuseabmessung:

137 mm x 186 mm (ohne Kabelverschr.) x 103 mm

Gehäuseabmessung:

86 mm x 70 mm x 60 mm

1.4.4 Technische Daten der Leckagesonde (1)

Anschluss Leitungsanschluss, Anschlussdose oder Stecker

Schutzart nach EN 60529 IP 65

Betriebsbedingungen atmosphärische Bedingungen

Dichte ρ der Flüssigkeit mit Schwimmer PE 52 min 1,05 g/cm³

PE 52 L min 0,8 g/cm³

Schalthysterese Typ. 2 mm Schaltpunkttoleranz max. 2 mm

Widerstandswert der Leckagesonde (L-Kontakt):

Betriebsbereitschaft ca. 1 k Ω (betätigt) Leckagemeldung ca. 12 k Ω (unbetätigt)

Widerstandswert der Leckagesonde (LR-Kontakt):

Betriebsbereitschaft ca. 47 Ω (Kontaktschutzwiderstand)

Leckagemeldung ca. ∞ (Kontakt geöffnet)

ELB Füllstandsgeräte

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

TB_Z-65.40-153_Okt2021.doc Stand: 08.10.2021 Seite: 13/24

1.4.5 Technische Daten der Messumformer (2):

Тур	KR-163/A bzw. KR-163/B	KR-163/A/Ex	KR-268 bzw. KR-168x	XR	LR (ET-R)
<u>Netzversorg.:</u>					
Nennspannung	230 VAC (+10% / -15%)	230 VAC (+10% / -15%)	230 VAC (+10% / -15%)	20 230VAC/DC	24 V (± 10%)
auf Wunsch: (± 10 %)	24; 42; 48; 110; 115; 127; 240; VAC	24; 42; 48; 110; 115; 127; 240; VAC		24 V DC 230 V AC	
Nennfrequenz	48 62 Hz	48 62 Hz	48 62 Hz	max. 62 Hz	
Leistungsaufnahme	≥ 3 VA		≥ 3 VA	< 2 VA / W	≥ 0.4 W
auf Wunsch:	24 (2035) VDC	24 (2035) VDC	24 (2035) VDC		
Leistungsaufnahme	< 2 W		< 2 W		
<u>Ausgang:</u>					
Ausgangskontakt	2 potentialfreie Wechselkontakte	1 potentialfreier Wechselkontakt	je Ausgang: 1 potentialfreier Wechselkontakt	2 potentialfreie Wechselkontakte	
Schaltspanng	max. 250 VAC max. 150 VDC	max. 250 VAC max. 150 VDC	max. 250 VAC max. 150 VDC	max. 250 V	max. 24 V
Schaltstrom	max. $\cos \phi$ =1 \Rightarrow 3 A max. $\cos \phi$ =0.7 \Rightarrow 1 A	max. $\cos \phi$ =1 \Rightarrow 3 A max. $\cos \phi$ =0.7 \Rightarrow 1 A	max. cos φ =1⇒ 3 A max. cos φ =0.7 ⇒ 1 A	max. 5 A	max. 80 mA
Schaltleistgung	max. 1250 VA / W (30VDC/5A) 150 W	max. 100 / 50 VA / W (30 VDC) 10 W	max. 500 VA / W (30VDC) 10 W	max. 100 VA ; max. 50 W	max. 2 W
<u>Eingang:</u>		DIN EN 60947-5-6			
Leerlaufspanngung	8.6 9.6 V	8.6 9.6 V	8.6 9.6 V	max. 14.8 VDC	
Kurzschlussstrom	8.2 10.2 mA	8.2 10.2 mA	8.2 10.2 mA	max. 5.6 mA	
Schaltverzögerung	s 2·0 >	< 0.5 s	< 0.5 s	einst. 0.5 / 2 / 2.5 / 10 s	
Betriebstemperatur	-20 + 60 °C	-20 + 60 °C	-20 + 60 °C	-20 + 60 °C	
Schutzart nach EN 60529	IP 20	IP 20	IP 20	Klemmen: IP 20 Gehäuse: IP 40	

≋ELB. Füllstandsgeräte

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

Stand: 08.10.2021

Seite: 14/24

TB_Z-65.40-153_Okt2021.doc

Тур	ET-580	OAA-100-A1	OAA-100-A3	OAA-200	OAA-300	OAA-500
Netzversorgung:						
Nennspannung	20 230 V AC/DC	230 VAC (+10% / -15%)	230 VAC (+10% / -15%)	24 230 V AC/DC	230 VAC (+10% /-15%)	42253 VAC
auf Wunsch: (± 10 %)		24; 115; 240 VAC	24; 115; 240 VAC		24; 115; 240; VAC	
Nennfrequenz		48 62 Hz	48 62 Hz		48 62 Hz	48 62 Hz
Leistungsaufnahme		< 3 VA	<pre></pre> <pre>< 1 VA / W</pre>	max. 2 VA / W	< 3 VA	< 3 VA / W
auf Wunsch:		24 (2035) VDC	24 (2035) VDC		24 (2035) VDC	
Leistungsaufnahme	> 1 W	≥ 2 W	< 2 W		≥ 3 W	
<u>Ausgang:</u>						
Ausgangskontakt	2 potentialfreie Wechselkontakte	2 potentialfreie Wechselkontakte; 2 Schließerkontakte	2 potentialfreie Wechselkontakte	2 potentialfreie Wechselkontakte	6 potentialfreie Wechselkontakte	2 potentialfreie Wechselkontakte
Schaltspannung	max. 250 V AC/DC	max. 250 VAC max. 150 VDC	max. 250 VAC max. 150 VDC	max. 250 V AC/DC	max. 250 VAC max. 150 VDC	max. 250 VAC max. 115 VDC
Schaltstrom	max. 5 A	max. 3 A	max. 3 A	max. 5 A	max. 3 A	max. 3 A
Schaltleistung	max. 500 VA / W (30VDC) 10 W	max. 500 VA / W (30VDC/5A) 150 W	max. 500 VA / W (30VDC/5A) 150 W	max. 1250 VA max. 50 W	max. 500 VA / W (30VDC/5A) 150 W	max. 500 VA / W (30VDC) 10 W
Optokoppler						
<u>Eingang:</u>						
Leerlaufspanng.	< 10 V	< 10 VDC	< 10 V	max. 3.3 VAC	< 10 VDC	< 24 VDC
Kurzschlussstrom	< 5 mA	< 10 mA	< 10 mA	max. 1 mA	< 10 mA	< 20 mA
Schaltverzögerung		< 0.5 s	< 0.5 s		< 0.5 s	< 0.5 s
Betriebstemperatur	-20 + 60°C	-20 + 60°C	-20 + 60°C	-20 + 60°C	-20 + 60°C	-20 + 60°C
Schutzart nach EN 60529	IP 00	Gehäuse: IP 65	IP 20	Gehäuse IP 65	Gehäuse IP 65	Version A1: IP 65 Version A2: IP 20

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

TB Z-65.40-153 Okt2021.doc Stand: 08.10.2021 Seite: 15/24

Тур	ET-520 / ET-521	ET-522
<u>Netzversorg.:</u>		
Nennspannung	24 (20 35) VDC	24 (20 35) VDC
auf Wunsch: (± 10 %)		
Nennfrequenz		
Leistungsaufnahme		
auf Wunsch:		
Leistungsaufnahme	≥ 1 W	× 1 W
<u>Ausgang:</u>		
Ausgangskontakt	1 potentialfreier Wechselkontakt	Öffner oder Schließer
Schaltspanng	max. 250 VAC max. 150 VDC	max. 24 VDC
Schaltstrom	max. $\cos \phi$ =1 \Rightarrow 3 A max. $\cos \phi$ =0.7 \Rightarrow 1 A	max. 200 mA DC
Schaltleistgung	max. 500 VA / W (30VDC) 10 W	≥ 5 W
<u>Eingang:</u>	1 pot.fr. Halbleitersch. max. 30 VDC / 100 mA	
Leerlaufspanngung	< 10 V	× 10 V
Kurzschlussstrom	< 10 mA	< 5 mA
Schaltverzögerung	s 9.0 >	
Betriebstemperatur	-20 + 60°C	-20 + 60°C
Schutzart nach EN 60529	IP 65	IP 65

2. Werkstoffe der Leckagesonde

Die von der Flüssigkeit, deren Dämpfen oder Kondensat, berührten Teilen der Leckagesonde werden aus geeigneten Kunststoffen hergestellt.

Die Leitung ist mit einem an die Anwendung angepassten Mantelmaterial hergestellt.

3. Einsatzbereiche der Leckagesonde

Die Leckagesonden dürfen unter atmosphärischen Temperaturen und Drücken betrieben werden. Die Flüssigkeiten müssen feststoffrei oder feststoffarm sein, nicht zum Verharzen, Verkleben oder Auskristallisieren neigen. Die Feststoffanteile dürfen nicht magnetisierbar sein.

Feststoffdurchmesser $\leq 200 \ \mu m$

Viskosität ≤ 150 mm²/s (z.B. Olivenöl ca. 120 mm²/s)

4. Störmeldungen, Fehlermeldungen

Unterbrechung oder Kurzschluss der Signalleitung zwischen dem Leckagesonde (1) und dem Messumformer (2) oder ein Netzausfall bewirken auf Grund des verwendeten Ruhestromprinzips ein Abfallen der Ausgangskontakte der Messumformer in die Alarmstellung.

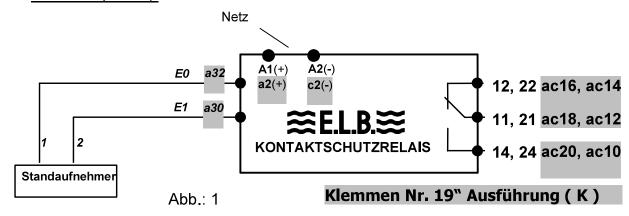
Bei T-200.LR bewirkt eine Unterbrechung der Anschlussleitung oder das Erreichen der Ansprechhöhe eine Unterbrechung des Signalkreises. Die Auswertung erfolgt in der nachgeschalteten Meldeeinrichtung (z. B. SPS).

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

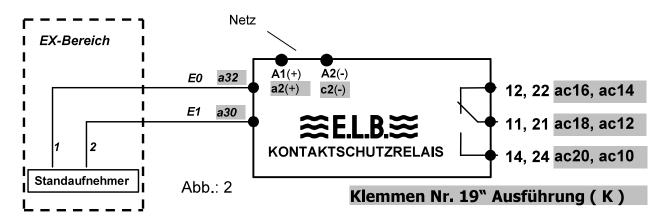
TB Z-65.40-153 Okt2021.doc Stand: 08.10.2021 Seite: 16/24

5. Einbau und Anschlusshinweise

5.1 Einbau der Leckagesonde


Die Leckagesonde ist von oben vorsichtig an der Leitung, z.B. in die Auffangwanne des zu überwachenden Behälters abzusenken. Dabei ist zu beachten, dass die Leckagesonde beim Erreichen des Auffangwannenbodens in einer aufrechten Position die optimale Standfestigkeit besitzt. Die Leitung soll nach oben locker geführt werden, ohne durchzuhängen. Der Schwimmer darf nicht durch eine aufliegende Leitung am Aufschwimmen gehindert werden.

Die Sondenleitung ist entweder mit unserem Zubehör oder bauseits zu befestigen / führen.


5.2 Anschluss des Standaufnehmers mit Schaltverstärker

Bei Anschluss des Schaltverstärker **KR-...** bzw. **XR-...** ist gemäß Anschlussbild zu verfahren. Die Signalleitung ist am Standaufnehmer generell an den Klemmen 1 u. 2 anzuschließen (Klemme 1 an E0 bzw. Klemme 2 an E1), die zusätzlich durch ein "**F**" gekennzeichnet sind. Die Messumformer sind, unter Beachtung des max. zulässigen Leitungswiderstandes ($\leq 50~\Omega$) der Signalleitung zu installieren. Für Überstromschutz ist zu sorgen, z.B. durch eine Sicherung (250 mA) oder Schutzschalter um Fehlerstrom in der Versorgungsverdrahtung zu begrenzen. Die Meldeeinrichtungen und / oder Steuerungseinrichtungen sind je nach Bedarf an den potentialfreien Ausgangskontakten anzuschließen.

KR-163... (Abb. 1):

KR-163/A/Ex.. (Abb. 2):

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

KR-168 / B 1-Kanal-Version (Abb. 3):

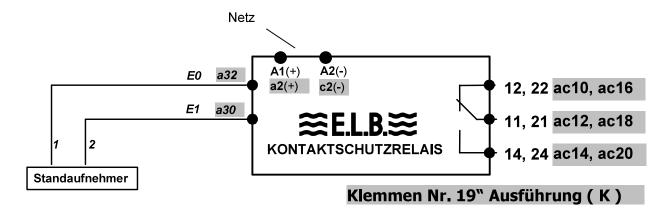


Abb. 3

KR-268 / B 2-Kanal-Version (Abb. 4):

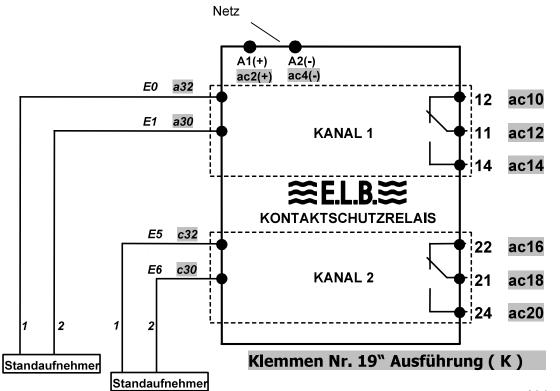


Abb.: 4

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

XR-.... (Abb. 5):

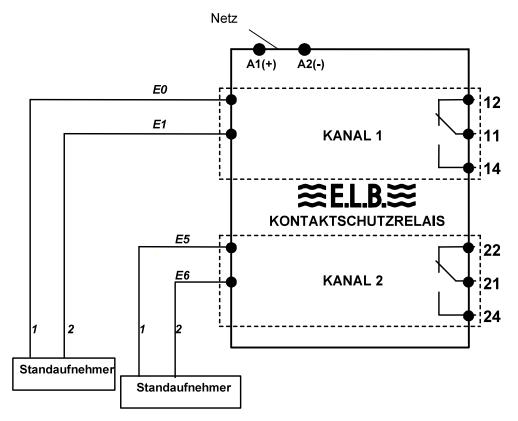
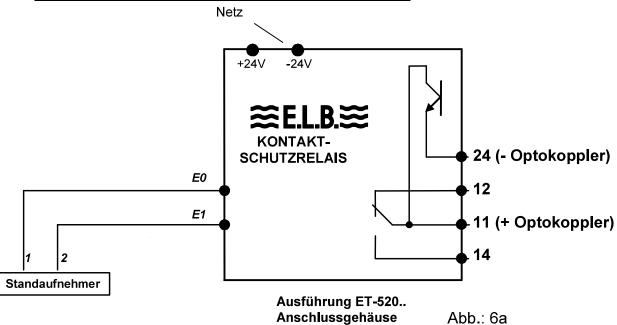
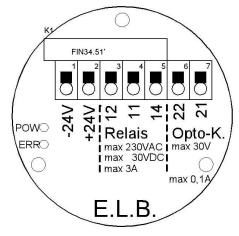
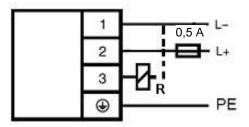




Abb.: 5

ET- 520.. (Abb. 6a), ET-521 (Abb. 6b), ET-522 (Abb. 6c):



Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

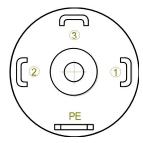

Ausführung ET- 521 Anschlussgehäuse

Abb.: 6b

Ausführung ET- 522 1-Kanalversion

Abb.: 6c

LR [ET-R...] (Abb. 7):

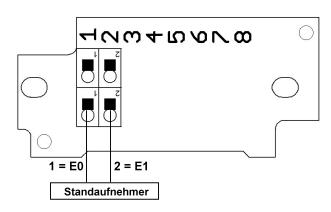


Abb.: 7

ET - 580 (Abb. 8):

Der Netzanschluss des Messumformers ET-580 ist auf die Klemme 1 ("+") und die Klemme 2 ("-") zu legen (20 ... 230 V).

Umschalter 1: Klemme 3 = NC

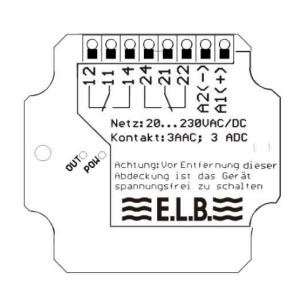
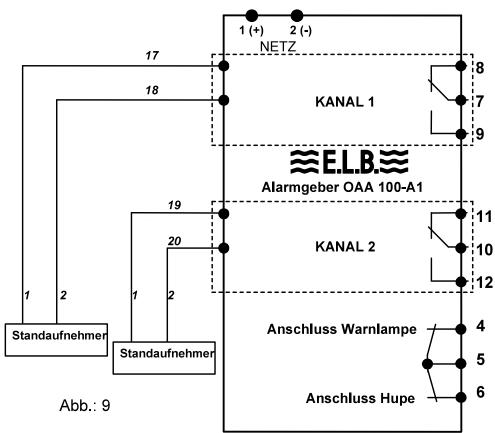
Klemme 4 = COM

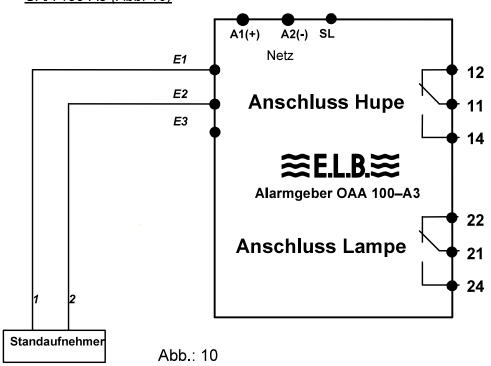
Klemme 5 = NO

Umschalter 2: Klemme 6 = NC

Klemme 7 = COM

Klemme 8 = NO


Abb.: 8

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

OAA 100-A1 (Abb. 9)

OAA 100-A3 (Abb. 10)

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

OAA-200 Optischer und Akustischer Alarmmelder (Abb. 11):

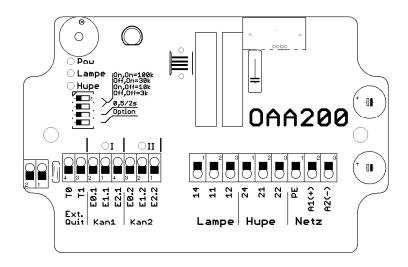
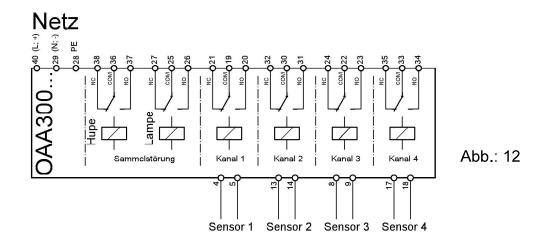
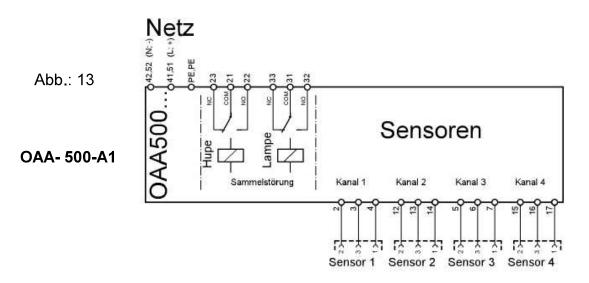



Abb.: 11

Klemmenbelegung OAA-200							
Netzanschluss	PE	A2 = L (+)	A1 = N (-)				
Ausgangsrelais Lampe	11 = COM	12 = NC	14 = NO				
Ausgangsrelais Hupe	21 = COM	22 = NC	24 = NO				
Kanal 1		E 0.1	E 1.1				
Kanal 2		E 0.2	E 1.2				
Eingang Ext. Quittung		T0, T1 potfreier Kontakt					

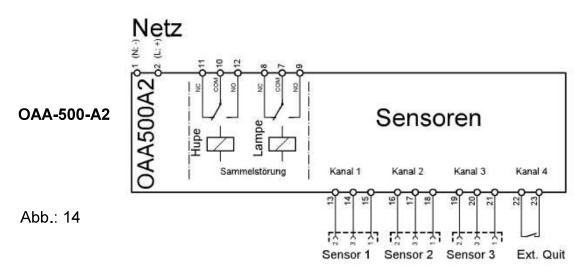
Bei bestehendem Alarm kann die Hupe mit der seitlichen Taste abgeschaltet werden. Weitere Alarmmeldungen schalten die Hupe erneut ein. Die Lampe Sammelstörung kann erst, wenn keine Alarmmeldungen mehr bestehen, mit der seitlichen Taste abgeschaltet werden. Die Alarmquittierung kann auch von extern mit einem potentialfreien Kontakt erfolgen.

OAA-300 Optischer und Akustischer Alarmmelder (Abb. 12):

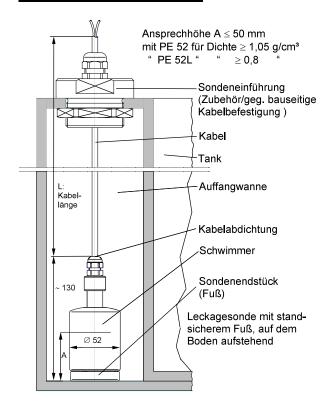


Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

Klemmenbelegung OAA-30	<u>0</u>			
Netzanschluss	28, 39 = PE	29 = N (-)	40 = L (+)	
Ausgangsrelais Kanal 1	19 = COM	20 = NO	21 = NC	
Ausgangsrelais Kanal 2	30 = COM	31 = NO	32 = NC	
Ausgangsrelais Kanal 3	22 = COM	23 = NO	24 = NC	
Ausgangsrelais Kanal 4	33 = COM	34 = NO	35 = NC	
Ausgangsrelais Hupe	36 = COM	37 = NO	38 = NC	
Ausgangsrelais Lampe	25 = COM	26 = NO	27 = NC	
Sensor 1		4 = E0	5 = E1	
Sensor 2		13 = E0	14 = E1	
Sensor 3		8 = E0	9 = E1	
Sensor 4		17= E0	18 = E1	
Eingang Ext. Quittung		1, 10 pot.	-freier Kontakt	


Bei bestehendem Alarm kann die Hupe mit der Taste Quit abgeschaltet werden. Weitere Alarmmeldungen schalten die Hupe erneut ein. Die Lampe Sammelstörung kann erst, wenn keine Alarmmeldungen mehr bestehen, mit der Taste Quit abgeschaltet werden. Die Alarmquittierung kann auch von extern mit einem potentialfreien Kontakt erfolgen.

OAA-500-... Optischer und Akustischer Alarmmelder (Abb. 13, 14):


Klemmenbelegung OAA	-500-A1		
Netzanschluss	PE	41, 51 = L (+)	42, 52 = N (-)
Ausgangsrelais Lampe	31 = COM	32 = NO	33 = NC
Ausgangsrelais Hupe	21 = COM	22 = NO	23 = NC
Sensor 1	2 = + 12 VDC	3 = Eingang (12 VDC)	4 = GND (-)
Sensor 2	12 = + 12 VDC	13 = Eingang (12 VDC)	14 = GND (-)
Sensor 3	5 = + 12 VDC	6 = Eingang (12 VDC)	7 = GND (-)
Sensor 4	15 = + 12 VDC	16 = Eingang (12 VDC)	17 = GND (-)
Eingang Ext. Quittung	1, 1	1 potfreier Schliesser-Kor	ıtakt

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

Klemmenbelegung OAA-500-A2						
Netzanschluss		2 = L (+)	1 = N (-)			
Ausgangsrelais Lampe	7 = COM	9 = NO	8 = NC			
Ausgangsrelais Hupe	10 = COM	12 = NO	11 = NC			
Sensor 1	13 = + 12 VDC	14 = Eingang (12 VDC)	15 = GND (-)			
Sensor 2	16 = + 12 VDC	17 = Eingang (12 VDC)	18 = GND (-)			
Sensor 3	19 = + 12 VDC	20 = Eingang (12 VDC)	21 = GND (-)			
Eingang Ext. Quittung	22, 2	23 potfreier Schliesser-Ko	ntakt			

6. Einstellhinweise

Die Leckagesonde ist unter Beachtung der in den VAwS der Länder und den im VdTÜV-Merkblatt "Tankanlagen 967" festgelegten Bedingungen einzusetzen.

Die E.L.B. Leckagesonde T-200.L.... gewährleistet, auf Grund ihrer Bauform, die Meldung einer Leckageflüssigkeit mit einer Dichte größer 1,05 g/cm³ (0,8 g/cm³) bei erreichen einer Ansprechhöhe von max. 50mm.

Damit entfällt die Einstellung der Ansprechhöhe.

Leckagesicherung mit Standgrenzschalter für Auffangwannen und Auffangräume zur Signalisierung ausgelaufener wassergefährdender Flüssigkeiten

TB Z-65.40-153 Okt2021.doc Stand: 08.10.2021 Seite: 24/24

7. Betriebsanweisung

Die Leckagesicherung - bestehend aus der Leckagesonde und dem Messumformer arbeitet bei bestimmungsgemäßem Gebrauch wartungsfrei. Den Anlagenteilen der Leckagesicherung sind Melde- bzw. Steuerungseinrichtungen nachzuschalten. Hierzu werden die Ausgangskontakte verwendet. Den allgemeinen Betriebsanweisungen der nachgeschalteten Geräte ist hierbei zu folgen.

8. Wiederkehrende Prüfung

Die Funktionsfähigkeit der Leckagesonde ist in angemessenen Zeitabständen, mindestens aber einmal im Jahr zu prüfen. Es liegt in der Verantwortung des Betreibers, die Art der Überprüfung und die Zeitabstände im genannten Zeitrahmen zu wählen.

Die Funktionsprüfung ist so durchzuführen, dass die einwandfreie Funktion der Leckagesicherung im Zusammenwirken aller Komponenten nachgewiesen wird.

Die Leckagesonde ist an der Leitung in den zugehörigen Lagerbehälter abzusenken. Ersatzweise kann die Prüfung auch in einem geeigneten Testgefäß mit Lagerflüssigkeit erfolgen. Bei Eintauchen des Schwimmers in die Lagerflüssigkeit muss die Leckagemeldung erfolgen. Es ist darauf zu achten, dass lediglich die Leckagesonde in die Flüssigkeit eintaucht, nicht aber die Leitung.

Prüfung der Störung: Die Signalleitung wird unterbrochen und anschließend kurzgeschlossen. In jedem Fall muss die Störungsmeldung und die Leckagemeldung erfolgen.

Falls die Funktionsfähigkeit der Leckagesonde und des Messumformers anderweitig erkennbar ist (Ausschluss funktionshemmender Fehler), kann die Prüfung auch durch Simulieren des entsprechenden Ausgangssignals durchgeführt werden. Weitere Hinweise zur Prüfmethodik können z. B. der Richtlinie VDI/VDE 2180, Blatt 4 entnommen werden.

SAFETY AND ENVIRONMENTAL TECHNOLOGY

Anhang 1

Einstellhinweise für Überfüllsicherungen von Behältern

1 Allgemeines

Um die Überfüllsicherung richtig einstellen zu können, sind folgende Voraussetzungen erforderlich:

- Kenntnis der Füllhöhe bei 100 % Füllvolumens des Behälters gemäß der Angabe des Nennvolumens auf dem Typenschild des Behälters
- Kenntnis der Füllkurve
- Kenntnis der Füllhöhe, die dem zulässigen Füllungsgrad entspricht,
- Kenntnis der Füllhöhenänderung, die der zu erwartenden Nachlaufmenge entspricht.

2 Zulässiger Füllungsgrad

- (1) Der zulässige Füllungsgrad von Behältern muss so bemessen sein, dass der Behälter nicht überlaufen kann und dass Überdrücke, welche die Dichtheit oder Festigkeit der Behälter beeinträchtigen, nicht entstehen.
- (2) Bei der Festlegung des zulässigen Füllungsgrades sind der kubische Ausdehnungskoeffizient der für die Befüllung eines Behälters in Frage kommenden Flüssigkeiten und die bei dem Lagern mögliche Erwärmung und eine dadurch bedingte Zunahme des Volumens der Flüssigkeit zu berücksichtigen.
- (3) Für das Lagern von Flüssigkeiten ohne zusätzliche gefährliche Eigenschaften in ortsfesten Behältern ist der zulässige Füllungsgrad bei Einfülltemperatur wie folgt festzulegen:
- 1. Für oberirdische Behälter und unterirdische Behälter, die weniger als 0,8 m unter Erdgleiche eingebettet sind

Füllungsgrad =
$$\frac{100}{1 + \alpha \cdot 35}$$
 in % des Fassungsraumes

2. Für unterirdische Behälter mit einer Erddeckung von mindestens 0,8 m

Füllungsgrad =
$$\frac{100}{1 + \alpha \cdot 20}$$
 in % des Fassungsraumes

3. Der mittlere kubische Ausdehnungskoeffizient α kann wie folgt ermittelt werden:

$$\alpha = \frac{d_{15} - d_{50}}{35 \cdot d_{50}}$$

Dabei bedeuten d₁₅ bzw. d₅₀ die Dichte der Flüssigkeit bei 15 °C bzw. 50 °C.

SAFETY AND ENVIRONMENTAL TECHNOLOGY

- (4) Absatz (1) kann für Flüssigkeiten unabhängig vom Flammpunkt ohne zusätzliche gefährliche Eigenschaften, deren kubischer Ausdehnungskoeffizient 150 x 10⁻⁵/K nicht übersteigt, auch als erfüllt angesehen werden, wenn der Füllungsgrad bei Einfülltemperatur:
- a) bei oberirdischen Behältern und bei unterirdischen Behältern, die weniger als 0,8 m unter Erdgleiche liegen, 95 % und
- b) bei unterirdischen Behältern mit einer Erddeckung von mindestens 0,8 m 97 % des Fassungsraumes nicht übersteigt.
- (5) Wird die Flüssigkeit während des Lagerns über 50 °C erwärmt oder wird sie im gekühlten Zustand eingefüllt, so sind zusätzlich die dadurch bedingten Ausdehnungen bei der Festlegung des Füllungsgrades zu berücksichtigen.
- (6) Für Behälter zum Lagern von Flüssigkeiten mit giftigen oder ätzenden Eigenschaften soll ein mindestens 3 % niedrigerer Füllungsgrad als nach Absatz (3) bis (5) eingehalten werden.

3 Ermittlung der Nachlaufmenge nach Ansprechen der Überfüllsicherung

3.1 Maximaler Volumenstrom der Förderpumpe

Der maximale Volumenstrom kann entweder durch Messungen (Umpumpen einer definierten Flüssigkeitsmenge) ermittelt werden oder ist der Pumpenkennlinie zu entnehmen. Bei Behältern nach DIN 4119 ist der zulässige Volumenstrom auf dem Behälterschild angegeben.

3.2 <u>Schließverzögerungszeiten</u>

- (1) Sofern die Ansprechzeiten, Schaltzeiten und Laufzeiten der einzelnen Teile nicht aus den zugehörigen Datenblättern bekannt sind, müssen sie gemessen werden.
- (2) Sind zur Unterbrechung des Füllvorgangs Armaturen von Hand zu betätigen, ist die Zeit zwischen dem Ansprechen der Überfüllsicherung und der Unterbrechung des Füllvorgangs entsprechend den örtlichen Verhältnissen abzuschätzen.

3.3 Nachlaufmenge

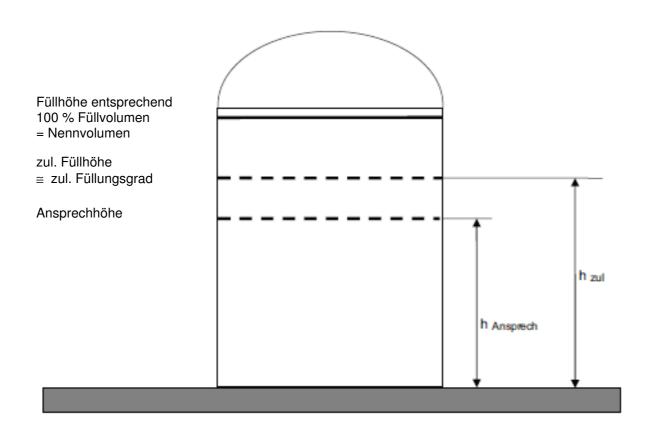
Die Addition der Schließverzögerungszeiten ergibt die Gesamtschließverzögerungszeit. Die Multiplikation der Gesamtschließverzögerungszeit mit dem nach Abschnitt 3.1 ermittelten Volumenstrom und Addition des Fassungsvermögens der Rohrleitungen, die nach Ansprechen der Überfüllsicherung ggf. mit entleert werden sollen, ergibt die Nachlaufmenge.

4 <u>Festlegung der Ansprechhöhe für die Überfüllsicherung</u>

Von dem Flüssigkeitsvolumen, das dem zulässigen Füllungsgrad entspricht, wird die nach Abschnitt 3.3 ermittelte Nachlaufmenge subtrahiert. Aus der Differenz wird unter Zuhilfenahme der Füllkurve, durch rechnerische Ermittlung oder durch Auslitern die Ansprechhöhe ermittelt. Die Ermittlung ist zu dokumentieren.

SAFETY AND ENVIRONMENTAL TECHNOLOGY

Berechnung der Ansprechhöhe für Überfüllsicherungen


Betr	iebsort:		
	älter-Nr.:Nennvo		
Übe	rfüllsicherung: Hersteller/Typ:		
Zula	ssungsnummer:		
1	Max. Volumenstrom (Q _{max}):		(m³/h)
2	<u>Schließverzögerungszeiten</u>		
2.1	Standaufnehmer It. Messung/Datenblatt:		(s)
2.2	Schalter/Relais/u.ä.:		
2.3	Zykluszeiten bei Bus-Geräten und Leittech	nik:	(s)
2.4	Förderpumpe, Auslaufzeit:		(s)
2.5	Absperrarmatur		
	- mechanisch, handbetätigt		
	Zeit Alarm/bis Schließbeginn		(s)
	Schließzeit		(s)
	- elektrisch, pneumatisch oder hydraul	isch betrieben	
	Schließzeit		(s)
Ges	amtschließverzögerungszeit (t _{ges})		(s)
3	Nachlaufmenge (V _{ges})		
3.1	Nachlaufmenge aus Gesamtschließverzög	erungszeit:	
	$V_1 = Q_{max} x t_{ges} / 3600 = $		(m³)
3.2	Nachlaufmenge aus Rohrleitungen:		
	$V_2 = \pi/4 \times d^2 \times L = $		(m³)
Ges	amte Nachlaufmenge (V _{ges} = V ₁ + V ₂)		(m³)
4	<u>Ansprechhöhe</u>		
4.1	Menge bei zulässigem Füllungsgrad:		(m³)
4.2	Nachlaufmenge:		(m³)
	Menge bei Ansprechhöhe (Differenz aus 4.	1 und 4.2):	(m³)
	Aus der Füllkurve, durch rechnerische Erm		(
	oder durch Auslitern ergibt sich daraus die	Ansprechhone:	(mm)

SAFETY AND ENVIRONMENTAL TECHNOLOGY

Berechnungsbeispiel der Größe des Grenzsignals für den Überfüllalarm bei Überfüllsicherungen mit kontinuierlicher Standmesseinrichtung

Weitere Formelzeichen siehe VDI/VDE 3519.

Ansprechhöhe ermittelt nach Anhang 1 zu ZG-ÜS

X = Größe des Grenzsignals, das der Ansprechhöhe entspricht.

Berechnung der Größe des Grenzsignals bei

a) Einheitssignal 0,02 MPa bis 0,10 MPa = bei 0,2 bar bis 1,0 bar

$$X_P = \frac{h_{Ansprech} (0,10-0,02)}{h_{zul}} + 0,02 \text{ (MPa)}$$

b) Einheitssignal 4 bis 20 mA

$$X_e = \frac{h_{Ansprech} (20-4)}{h_{zul}} + 4 (mA)$$

Messbe-	Einheitssignal	
reich	MPa	mA
100 %	0,10	20
	X_p	X _e
0 %	0,02	4

SAFETY AND ENVIRONMENTAL TECHNOLOGY

Anhang 2

Einbau- und Betriebsrichtlinie für Überfüllsicherungen

1 Geltungsbereich

Diese Einbau- und Betriebsrichtlinie gilt für das Errichten und Betreiben von Überfüllsicherungen, die aus mehreren Teilen zusammengesetzt werden.

2 Begriffe

- (1) Überfüllsicherungen sind Einrichtungen, die rechtzeitig vor Erreichen des zulässigen Füllungsgrades im Behälter (Berechnung der Ansprechhöhe für Überfüllsicherungen siehe Anhang 1) den Füllvorgang unterbrechen oder akustisch und optisch Alarm auslösen.
- (2) Unter dem Begriff Überfüllsicherungen sind alle zur Unterbrechung des Füllvorgangs bzw. zur Auslösung des Alarms erforderlichen Anlageteile zusammengefasst.
- (3) Überfüllsicherungen können außer Teilen mit allgemeiner bauaufsichtlicher Zulassung auch Teile ohne allgemeine bauaufsichtliche Zulassung enthalten. Aus Bild 1 geht hervor, welche Teile zulassungspflichtig sind (Teile links der Trennungslinie).
- (4) Als atmosphärische Bedingungen gelten hier Gesamtdrücke von 0.08 MPa bis 0.11 MPa = 0.8 bar bis 1.1 bar und Temperaturen von 20° C bis + 60° C.

3 Aufbau von Überfüllsicherungen

(siehe Bild 1 der Zulassungsgrundsätze für Überfüllsicherungen bzw. Anlage 1 der allgemeinen bauaufsichtlichen Zulassung)

- (1) Der Standaufnehmer (1) erfasst die Standhöhe.
- (2) Die Standhöhe wird bei einer kontinuierlichen Standmesseinrichtung im zugehörigen Messumformer (2) in ein der Standhöhe proportionales Ausgangssignal umgeformt, z. B. in ein genormtes Einheitssignal (pneumatisch 0,02 MPa bis 0,10 MPA = 0,2 bar bis 1,0 bar oder elektrisch 4 20 mA bzw. 2 10 V oder digital über eine geeignete Busschnittstelle). Das proportionale Ausgangssignal wird einem Grenzsignalgeber (3) zugeführt, der das Signal mit einstellbaren Grenzwerten vergleicht und binäre Ausgangssignale liefert.
- (3) Die Standhöhe wird bei Standgrenzschaltern im Standaufnehmer (1) oder im zugehörigen Messumformer (2) in ein binäres Ausgangssignal umgeformt oder als digitale Signale an eine geeignete Busschnittstelle weitergeleitet.
- (4) Signale können geleitet werden durch z. B. pneumatische Kontakte oder elektrische Kontakte (Schalter, elektronische Schaltkreise, Initiatorstromkreise) oder als digitale Signale für Busschnittstellen.
- (5) Das binäre Ausgangssignal d. Messumformers (2) bzw. d. Grenzsignalgebers (3) bzw. die BUS-Kommunikationssignale des Messumformers (2) können direkt oder über geeignete Auswerteeinrichtungen/Signalverstärker (4) der Meldeeinrichtung (5a) oder der Steuerungseinrichtung (5b) mit Stellglied (5c) zugeführt werden.
- (6) Das proportionale (analoge) bzw. binäre Ausgangssignal kann auch über geeignete elektronische Schaltkreise (z. B. SPS, Prozessleitsysteme) ausgewertet werden.

E.L.B. Füllstandsgeräte Bundschuh GmbH & Co. KG - An der Hartbrücke 6 - 64625 Bensheim - Tel.: 06251-84620 Fax: 06251-46272					
Web: www.elb-bensheim.de E-Mail: info@elb-bensheim.de					
Stand 20.01.2015	Irrtümer und Änderungen vorbehalten	Seite 5 von 7			

SAFETY AND ENVIRONMENTAL TECHNOLOGY

4 Einbau und Betrieb

4.1 Fehlerüberwachung

- (1) Überfüllsicherungen müssen bei Ausfall der Hilfsenergie, bei Unterbrechung der Verbindungsleitungen zwischen den Teilen oder Ausfall der BUS-Kommunikation den Füllvorgang unterbrechen oder akustisch und optisch Alarm auslösen. Dies kann bei Überfüllsicherungen nach diesen Zulassungsgrundsätzen durch Maßnahmen nach den Absätzen (2) bis (4) erreicht werden, womit auch gleichzeitig die Überwachung der Betriebsbereitschaft gegeben ist.
- (2) Überfüllsicherungen sind in der Regel im Ruhestromprinzip oder mit anderen geeigneten Maßnahmen zur Fehlerüberwachung abzusichern.
- (3) Überfüllsicherungen mit Standgrenzschalter, deren binärer Ausgang ein Initiatorstromkreis mit genormter Schnittstelle ist, sind an einen Schaltverstärker gemäß DIN EN 60947-5-6 anzuschließen. Die Wirkungsrichtung des Schaltverstärkers ist so zu wählen, dass sein Ausgangssignal sowohl bei Hilfsenergieausfall als auch bei Leitungsbruch im Steuerstromkreis den Füllvorgang unterbricht oder akustisch und optisch Alarm auslöst.
- (4) Stromkreise für akustische und optische Melder, die nicht nach dem Ruhestromprinzip geschaltet werden können, müssen hinsichtlich ihrer Funktionsfähigkeit leicht überprüfbar sein.

4.2 Steuerluft

Die als Hilfsenergie erforderliche Steuerluft darf keine Verunreinigungen mit einer Partikelgröße von > 100 μ m enthalten und muss eine Luftfeuchtigkeit entsprechend einem Taupunkt von -25 °C haben.

4.3 Fachbetriebe

Mit dem Einbau, Instandhalten, Instandsetzen und Reinigen der Überfüllsicherungen dürfen nur solche Betriebe beauftragt werden, die für diese Tätigkeiten Fachbetrieb nach Wasserrecht sind, es sei denn, die Tätigkeiten sind nach wasserrechtlichen Vorschriften von der Fachbetriebspflicht ausgenommen oder der Hersteller der Standaufnehmer und Messumformer führt die obigen Arbeiten mit eigenem, sachkundigen Personal aus.

5 Prüfungen

5.1 Prüfung vor Erstinbetriebnahme und Wiederinbetriebnahme nach Stilllegung

Nach Abschluss der Montage der Überfüllsicherung oder bei Wiederinbetriebnahme des Behälters nach Stilllegung muss durch einen Sachkundigen des Fachbetriebes nach Abschnitt 4.3 bzw. Betreibers, falls keine Fachbetriebspflicht vorliegt, eine Prüfung auf ordnungsgemäßen Einbau und einwandfreie Funktion durchgeführt werden.

Ist bei Wechsel der Lagerflüssigkeit mit einer Änderung der Einstellungen z. B. der Ansprechhöhe oder der Funktion zu rechnen, ist eine erneute Funktionsprüfung durchzuführen.

Über die Einstellung der Überfüllsicherung ist vom durchführenden Sachkundigen eine Bescheinigung mit Bestätigung der ordnungsgemäßen Funktion auszustellen und dem Betreiber zu übergeben.

SAFETY AND ENVIRONMENTAL TECHNOLOGY

5.2 Wiederkehrende Prüfung

- (1) Der ordnungsgemäße Zustand und die Funktionsfähigkeit der Überfüllsicherung sind in angemessenen Zeitabständen, mindestens aber einmal im Jahr, durch einen Sachkundigen des Fachbetriebes nach Abschnitt 4.3 bzw. des Betreibers, falls keine Fachbetriebspflicht vorliegt, zu prüfen. Es liegt in der Verantwortung des Betreibers, die Art der Überprüfung und die Zeitabstände im genannten Zeitrahmen zu wählen. Die Prüfung ist so durchzuführen, dass die einwandfreie Funktion der Überfüllsicherung im Zusammenwirken aller Komponenten nachgewiesen wird.
 - Dies ist bei einem Anfahren der Ansprechhöhe im Rahmen einer Befüllung gewährleistet.
 - Wenn eine Befüllung bis zur Ansprechhöhe nicht praktikabel ist,
 - so ist der Standaufnehmer durch geeignete Simulation des Füllstandes oder des physikalischen Messeffektes zum Ansprechen zu bringen oder
 - falls die Funktionsfähigkeit des Standaufnehmers/Messumformers anderweitig erkennbar ist (Ausschluss funktionshemmender Fehler), kann die Prüfung auch durch Simulieren des entsprechenden Ausgangssignals durchgeführt werden.
- (2) Ist eine Beeinträchtigung der Funktion der Überfüllsicherungen durch Korrosion nicht auszuschließen und ist diese Störung nicht selbstmeldend, so müssen die durch Korrosion gefährdeten Teile in angemessenen Zeitabständen regelmäßig in die Prüfung einbezogen werden.
- (3) Von den Vorgaben zur wiederkehrenden Prüfung kann bezüglich der Funktionsfähigkeit bei fehlersicheren Teilen von Überfüllsicherungen abgewichen werden, wenn:
 - Komponenten mit besonderer Zuverlässigkeit (Fehlersicherheit) bzw. sicherheitsgerichtete Einrichtungen im Sinne der VDI/VDE 2180 (Fail-Safe-System) eingesetzt werden oder dies durch eine gleichwertige Norm nachgewiesen wurde.
 - <u>und</u> dies für die geprüften Teile in der allgemeinen bauaufsichtlichen Zulassung so ausgewiesen ist.

5.3 Dokumentation

Die Ergebnisse der Prüfungen nach Nr. 5.1 und 5.2 sind aufzuzeichnen und aufzubewahren.

5.4 Wartung

Der Betreiber muss die Überfüllsicherung regelmäßig instand halten, soweit dies zum Erhalt der Funktionsfähigkeit erforderlich ist. Die diesbezüglichen Empfehlungen der Hersteller sind zu beachten.